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ABSTRACT:

This project presents a design methodology for high-speed Booth encoded parallel multiplier. For partial product
generation, we propose a new modified Booth encoding (MBE) scheme to improve the performance of traditional
MBE schemes. An an optimization for binary radix-16 (modified) Booth recoded multipliers to reduce the maximum
height of the partial product columns to _n/4_ for n = 64-bit unsigned operands is presented in this concept. This is in
contrast to the conventional maximum height of _ (7 + 1)/4_. Therefore, a reduction of one unit in the maximum height
is achieved. This reduction may add flexibility during the design of the pipelinedmultiplier to meet the design goals, it
may allow further optimizations of the partial product array reduction stage in terms of area/delay/power and/or may
allow additional addends to be included in the partial product array without increasing the delay. Further, this project is
enhanced by using modified square root carry select adder to further reduce timing constraints.

KEYWORDS: Modified Booth Encoding, Radix-16, Pipeline, Multiplier, Enhanced, Carry select adder, Binary Excess

Converter.

INTRODUCTION:

Multipliers play an important role in today’s digital signal
processing and various other applications. With
advances in technology, many researchers have tried and
are trying to design multipliers which offer either of the
following design targets - high speed, low power
consumption, regularity of layout and hence less area or
even combination of them in one multiplier thus making
them suitable for various high speed, low power and
compact VLSI implementation. The common
multiplication method is “add and shift” algorithm. In
parallel multipliers number of partial products to be
added is the main parameter that determines the
performance of the multiplier. To reduce the number of
partial products to be added, Modified Booth algorithm
is one of the most popular algorithms. To achieve speed
mmprovements Wallace Tree algorithm can be used to
reduce the number of sequential adding stages. Further
by combining both Modified Booth algorithm and
Wallace Tree technique we can see advantage of both
algorithms in one multiplier. However with increasing
parallelism, the amount of shifts between the partial
products and intermediate sums to be added will
increase which may result in reduced speed, increase in
silicon area due to irregularity of structure and also
increased power consumption due to increase in

mterconnect resulting from complex routing. On the
other hand “serial-paralle]” multipliers compromise
speed to achieve better performance for area and power
consumption. The selection of a parallel or serial
multiplier actually depends on the nature of application.
In this lecture we introduce the multiplication algorithms
and architecture and compare them in terms of speed,
area, power and combination of these metrics.

LITERATURE SURVEY:

A traditional method to reduce the aging effects is
overdesign which includes techniques like guard-banding
ad gate oversizing. This approach can be area and
power inefficient [8]. To avoid this problem, an NBTI-
aware technology mapping technique wasproposed in [7]
which guarantee the performance of the circuit during its
lifetime. Another technique was an NBTI- aware sleep
transistor in [3] which improve the lifetime stability of
the power gated circuits under considerations. A joint
logic restructuring and pin reordering method in [6] 1s
based on detecting functional symmetries and transistor
stacking effects. This approach 1s an NBTT optimization
method that considered path sensitization. Dynamic
voltage scaling  and  bogy-biasing  techniques
wereproposed in [4] and [5] to reduce power or extend
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circuit life. These techniques require circuit modification
or do not provide optimization of specific circuits. Every
gate In any VLSI circuit has its own delay which reduces
the performance of the chip. Traditional circuits use
critical pathdelayas the overall circuit clock cycle in order
to perform correctly. However, in many worst-case
designs, the probability that the critical pathdelay is
activated 1s low. In such cases, the strategy of minimizing
the worst-case conditions may lead to inefficient designs.
Fornoncritical path, using the critical path delay as the
overall cycle period will result in significant timing waste.
Hence, the variable latencydesign was proposed to
reduce the timing waste of traditional circuits. A short
path activation function algorithm was proposed in [16]
to mmprove the accuracy of the hold logic and to
optimize the performance of the variable-latency circuit.
An instruction scheduling algorithm was proposed in
[17] to schedule the operations on nonuniform latency
functional units and improve the performance of Very
Long Instruction Word processors. In [18], a variable-
latency pipelined multiplier architecture with a Booth
algorithm was proposed. In [19], process-variation
tolerant architecture for arithmetic units was proposed,
where the effect of process-variation is considered to
icrease the circuit yield. In addition, the critical paths
are divided into two shorter paths that could be unequal
and the clock cycle 1s set to the delay of the longer one.
These research designs were able to reduce the timing
waste of traditional circuits to improve performance, but
they did not consider the aging effect and could not
adjust themselves during the runtime. A variable-latency
adder design that considers the aging effectwas proposed
in [20] and [21]. Chen et al (2008) presented low-power
2's complement multipliers by minimizing the switching
activities of partial products using the radix-4 Booth
algorithm. Before computation for two mput data, the
one with a smaller effective dynamic range is processed
to generate Booth codes, thereby increasing the
probability that the partial products become zero. By
employing the dynamic-range determination unit to
control input data paths, the multiplier with a column-
based adder tree of compressors or counters is designed.
To further reduce power consumption, the two
multipliers based on row-based and hybrid-based adder
trees are realized with operations on effective dynamic
ranges of input data.

EXISTING TECHNIQUE:

RADIX-16 BOOTH MULTIPLIER: describe
briefly the architecture of the basic radix-16 Booth
multiplier (see [17] for instance). For sake of
simplicity, but without loss of generality, we consider
unsigned operands with n = 64. Let us denote with X
the multiplicand operand with bit components x7 (1= 0
to n — 1, with the least-significant bit, L.SB, at position

0) and with Y the multiplier operand and bit
components yz. The first step 1s the recoding of the
multiplier operand [8]: groups of four bits with
relative values in the set 0, 1, ..., 14, 15/ are recoded
to digits in the set /~8,-7, ...,0,...,7, 8/
(minimally redundant radix-16 digit set to reduce the
number of multiples). This recoding is done with the
help of a transfer digit # and an interim digit wr [7].
The recoded digit z 1s the sum of the interim and
transfer digits zr = wi + t. When the value of the four
bits, vz, 1s less than 8, the transfer digit is zero and the
mterim digit wz = vi. For values of v greater than or
equal to 8, v7is transformed into vi= 16 — (16 — 1), so
that a transfer digit is generated to the next radix-16
digit position (#+1) and an interim digit of value wr =
—(16 — wisleft. Thatis O <y <8: &+l =0 wi=viwr €
0,71 8 si <15 : 41 =1 wi=—-(16 — v) wi €
[-8,—1]. The transfer digit corresponds to the most-
significant bit (MSB) of the four-bit group, since this
bit determines if the radix-16 digit is greater than or
equal to 8. The final logical step is to add the interim
digits and the transfer digits (0 or 1) from the radix-16
digit position to the right. Since the transfer digit is
either 1 or 0, the addition of the interim digit and the
transfer digit results in a final digit in the set /~8,—7, ..
.,0,...,7, 8} Due to a possible transfer digit from
the most significant radix-16 digit, the number of
resultant radix-16 recoded digits i1s _(z + 1)4_.
Therefore, for n = 64 the number of recoded digits
(and the number of partial products) 1s 17. Note that
the most significant digit i1s 0 or 1 because it 1s in fact
just a transfer digit. After recoding, the partial products
are generated by digit multiplication of the recoded
digits times the multiplicand X.
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Fig. 1. Partial product generation. For the set of digits
~8,~-7,...,0,...,7,8} the multiples 1X, 2X, 4X,
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and 8X are easy to compute, since they are obtained
by simple logic shifts. The negative versions of these
multiples are obtained by bit inversion and addition of
a 1 in the corresponding position in the bit array of the
partial products. The generation of 3X, 5X, and 7X
(odd multiples) requires carry-propagate adders (the
negative versions of these multiples are obtained as
before). Finally, 6X is obtained by a simple one bit left
shift of 8X. Fig. 1 illustrates a possible implementation
of the partial product generation. Five bits of the
multiplier Y are used to obtain the recoded digit (four
bits of one digit and one bit of the previous digit to
determine the transfer digit to be added). The
resultant digit is obtained as a one-hot code to directly
drive a 8 to 1 multiplexer with an implicit zero output
(output equal to zero when all the control signals of
the multiplexer are zero). The recoding requires the
implementation of simple logic equations that are not
i the critical path due to the generation in parallel of
the odd multiples (carry-propagate addition). The
XOR at the output of the multiplexer is for bit
complementation (part of the computation of the two’s
complement when the multiplier digit 1s negative). Fig.
2(a) llustrates part of the resultant bit array for n = 64
after the simplification of the sign extension [7]. In
general, cach partial product has n + 4 bits including
the sign in two’s complement representation. The
extra four bits are required to host a digit
multiplication by up to 8 and a sign bit due to the
possible multiplication by negative multiplier digits.
Since the partial products are left-shifted four bit
positions with respect to each other, a costly sign
extension would be necessary. However, the sign
extension 1s simplified by concatenation of some bits
to each partial product (S5'is the sign bit of the partial
product and C'is § complemented): CS5S for the first
partial product and 111C for the rest of partial
products (except the partial product at the bottom that
Is non negative since the corresponding multiplier digit
1s 0 or 1). The bits denoted by b in Fig. 2 corresponds
to the logic 1 that 1s added for the two’s complement
for negative partial products. After the generation of
the partial product bit array, the reduction
(multioperand addition) from a maximum height of 17
(for n = 64) to 2 is performed. The methods for
multioperand addition are well known, with a
common solution consisting of using 3 to 2 bit
reduction with full adders (or 3:2 carry-save adders) or
4 to 2 bit reduction with 4:2 carry-save adders. The
delay and design effort of this stage are highly
dependent on the maximum height of the bit array. It
is recognized that reduction arrays of 4:2 carry-save
adders may lead to more regular layouts [16]. For
mstance, with a maximum height of 16, a total of 3
levels of 4:2 carry-save adders would be necessary. A

maximum height of 17 leads to different approaches
that may increase the delay and/or require to use
arrays of 3:2 carry-save adders interconnected to
minimize delay [20]. After the reduction to two
operands, a carry-propagate addition 1s performed.
This addition may take advantage of the specific signal
arrival times from the partial product reduction step.
To reduce the maximum height of the partial product
bit array we perform a short carry-propagate addition
i parallel to the regular partial product generation.
This short addition reduces the maximum height by
one row and it 1s faster than the regular partial product
generation. Fig. 2(b) shows the elements of the bit
array to be added by the short adder. Fig. 2(c) shows
the resulting partial product bit array after the short
addition. Comparing both figures, we observe that the
maximum height 1s reduced from 17 to 16 for n = 64.
Fig. 3 shows the specific elements of the bit array
(boxes) to be added by the short carry-propagate
addition. In this figure, piy corresponds to the bit j of
partial product 7, sO 1s the sign bit of partial product 0,
) = NOT(s0), biis the bit for the two’s complement
of partial product 7 and zr1s the ith bit of the result of
the short addition. The selection of these specific bits
to be added is justified by the fact that, in this way, the
short addition delay is hidden from the critical path
that corresponds to a regular partial product
generation (this will be shown in Section IV). We
perform the computation in two concurrent parts A
and B as indicated in Fig. 3. The elements of the part
A are generated faster than the elements of part B.
Specifically the elements of part A are obtained from:
e the sign of the first partial product: this 1s directly
obtained from bit y3 since there is no transfer digit
from a previous radix-16 digit; ® bits 3 to 7 of partial
product 16: the recoded digit for partial product 16
can only be 0 or 1, since it is just a transfer digit.
Therefore the bits of this partial product are generated
by a simple AND operation of the bits of the
multiplicand X and bit y63 (that generates the transfer
from the previous digit). Therefore, we decided to
mmplement part A as a speculative addition, by
computing two results, a result with carry-in = 0 and a
result with carry-in = 1. This can be computed
efficiently with a compound adder [7].

PROPOSED TECHNIQUE:

DESIGN OF SQUARE ROOT CSLA
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Fig: Basic burlding block of CSLA
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Block diagram of 16-bit Carry Select adder:
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Fig: Existing system (Regular 16-bit Carry select adder)

The block diagram of the regular 16-bit
square root CSLA is shown in the figure 3.2. This
adder 1s a variable sized adder.

The carryselect adder generally consists of
two ripple carry adders and a multiplexer. Adding two
n-bit numbers with a carry-select adder is done with
two adders (therefore two ripple carry adders) in order
to perform the calculation twice, one time with the
assumption of the carry being zero and the other
assuming one. After the two results are calculated, the
correct sum, as well as the correct carry, 1s then
selected with the multiplexer once the correct carry is
known.
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1- Carry propagation ‘
‘ Sum Generation ‘
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Fig: -bit carry select adder module topology

Seeing at the figure, the hardware overhead
of the carry select adder is restricted to an additional
carry path and a multiplexer and equals about 80%
with respect to ripple carry adder. A full carry select
adder 1s now constructed by chaining equal number of
adder stages.

The critical path is shaded in gray color.
From inspection of the circuit, we can derive the first
order model of the worst case propagation delay of the

T = tsetup + P x tcarry + (2N)Ae x tmux + tsum
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Fig: Delay propagation of 16-bit CSLA

The design procedure and the delay
propagation of the 16-bit square root CSLA can be
best explained from the figure 3.4. As from the figure,
it can be seen that the model consists of 5 groups of
different size. The addition process is carried out by
considering the carry Cin=0 and Cin=1 and then
generating the actual sum and carry using the actual
carry from the previous stage is accomplished.
Architecture of 16-bit square root CSLA:
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Fig : Delay and Area evaluation of an XOR gate

The delay and area evaluation methodology
considers all gates to be made up of AND, OR and
Inverter, each having delay equal to 1 unit and area
equal to 1 unit.
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Fig: Delay and area evaluation of regular SQRT
CSLA: (a) group2, (b) group3, (c) group4 and (d)
groupd. Fis a Full Adder.

This 16-bit square root CSLA consists of five
groups where each group 1is of variable size. The 16-bit
value data 1s divided as 2-bit, 2-bit, 3-bit, 4-bit, 5-bit
groups. The first group consists of 2-bit ripple carry
adder. The actual input carry is applied to this adder.
The ripple carry adder receives the carry and
performs the 2 2-bit addition (a[1:0], b[1:0]).

Delay and Area Evaluation Methodology of the basic
adder blocks:

SinTme L e
The AND, OR and Inverter (AOI) 6 SEREGE Py |
implementation of an XOR gate is shown in the figure e : N
3.6. The gdtcs bctwlccn the dotted lines are pcrformin.g CONCLUSION:
the operations in parallel and the numeric . RS .
In this paper, a new Radixl6 modified booth

representation of each gate indicates the delay

. multiplier architecture along with carry select adder 1s
contributed by that gate.

presented to execute the multiplication-accumulation
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operation, which 1s the key operation, for digital signal
processing and multimedia information processing
efficiently, was proposed. By removing the
mdependent accumulation process that has the largest
delay and merging it to the compression process of
the partial products, the overall multiplier
performance has been improved almost twice as much
as in the previous algorithms.

REFERENCE:

[1] Wen-Chang Yeh and Chein-Wei Jen, “High-speed
Booth encoded parallel multiplier design,” IEEL
Trans. on Computers, vol. 49, 1sseu 7, pp. 692-701,
July 2000.

[2] Jung-Yup Kang and Jean-Luc Gaudiot, “A simple
high-speed multiplier design,” IEEE Trans. on
Computers, vol. 55, issue 10, Oct. pp. 1253-1258,
2006.

[3] Shiann-Rong Kuang, Jiun-Ping Wang and Cang-
Yuan Guo, “Modified Booth multipliers with a regular
partial product array,” IEEE Trans. onCircuit and :
Systems, vol.56, Issue 5, pp. 404-408, May 2009. : V/

[4] Li-rong Wang, Shyh-Jye Jou and Chung-Len Lee, ;

“A well-structured modified Booth multiplier design,” : '

Proc. of IEEE VLSI-DAT, pp. 85-88, April 2008. ! &9
[5] A. A. Khatibzadeh, K. Raahemifar and M.

Ahmadi, “A 1.8V 1.1GHz Novel Digital Multiplier,”

Proc. of IEEE CCECE, pp. 686-689, May 2005.

[6] S. Hus, V. Venkatraman, S. Mathew, H. Kaul, M.

Anders, S. Dighe, W. Burleson and R.

Krishnamurthy, “A 2GHZ 13.6mW 12x9b mutiplier

for energy efficient FFT accelerators,” Proc. of IEEE

ESSCIRC, pp. 199-202, Sept. 2005.

[7]1 Hwang-Cherng Chow and I-Chyn Wey, “A 3.3V

1GHz high speed pipelined Booth multiplier,” Proc.

of IEEE ISCAS, vol. 1, pp. 457-460, May 2002.

[8] M. Aguirre-Hernandez and M. Linarse-Aranda,

“Energy-efficient  high-speed CMOS  pipelined

multiplier,” Proc. of IEEE CCE, pp. 460-464, Nov.

2008.

[9]1 Yung-chin Liang, Chingsi Huang and Wei-bin

Yang, “A 320-MHz 8bit x 8bit pipelined multiplier in

ultra-low supply voltage,” Proc. of IEEE, A-SSCC, pp.

73-76, Nov. 2008.

[10] S. B. Tatapudi and J. G. Delgado-Frias,

“Designing pipelined systems with a clock period

approaching pipeline register delay,” Proc. of IEEL

MWSCAS, vol. 1, pp. 871-874, Aug. 2005.

[11] A. D. Booth, “A signed binary multiplication

technique,” Quarterly J. Mechanical and Applied

Math, vol. 4, pp.236-240, 1951.

[12] M. D. Ercegovac and T. Lang, Digital Arithmetic,

Morgan Kaufmann Publishers, Los Altos, CA 94022,

USA, 2003.

Copyright @ 2018 ijearst. All rights reserved.
INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH
SCIENCE AND TECHNOLOGY
Volume.02, IssueNo0.03, June -2018, Pages: 467-475



