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ABSTRACT: 

This project presents a design methodology for high-speed Booth encoded parallel multiplier. For partial product   

generation, we propose a new modified Booth encoding (MBE) scheme to improve the performance of traditional   

MBE schemes. An an optimization for binary radix-16 (modified) Booth recoded multipliers to reduce the maximum 

height of the partial product columns to _n/4_ for n = 64-bit unsigned operands is presented in this concept. This is in 

contrast to the conventional maximum height of _(n + 1)/4_. Therefore, a reduction of one unit in the maximum height 

is achieved. This reduction may add flexibility during the design of the pipelinedmultiplier to meet the design goals, it 

may allow further optimizations of the partial product array reduction stage in terms of area/delay/power and/or may 

allow additional addends to be included in the partial product array without increasing the delay. Further, this project is 

enhanced by using modified square root carry select adder to further reduce timing constraints. 

KEYWORDS: Modified Booth Encoding, Radix-16, Pipeline, Multiplier, Enhanced, Carry select adder, Binary Excess 

Converter. 

 

INTRODUCTION: 

Multipliers play an important role in today’s digital signal 

processing and various other applications. With 

advances in technology, many researchers have tried and 

are trying to design multipliers which offer either of the 

following design targets – high speed, low power 

consumption, regularity of layout and hence less area or 

even combination of them in one multiplier thus making 

them suitable for various high speed, low power and 

compact VLSI implementation.    The common 

multiplication method is “add and shift” algorithm. In 

parallel multipliers number of partial products to be 

added is the main parameter that determines the 

performance of the multiplier. To reduce the number of 

partial products to be added, Modified Booth algorithm 

is one of the most popular algorithms. To achieve speed 

improvements Wallace Tree algorithm can be used to 

reduce the number of sequential adding stages. Further 

by combining both Modified Booth algorithm and 

Wallace Tree technique we can see advantage of both 

algorithms in one multiplier. However with increasing 

parallelism, the amount of shifts between the partial 

products and intermediate sums to be added will 

increase which may result in reduced speed, increase in 

silicon area due to irregularity of structure and also 

increased power consumption due to increase in  

 

interconnect resulting from complex routing. On the 

other hand “serial-parallel” multipliers compromise 

speed to achieve better performance for area and power 

consumption.  The selection of a parallel or serial 

multiplier actually depends on the nature of application. 

In this lecture we introduce the multiplication algorithms 

and architecture and compare them in terms of speed, 

area, power and combination of these metrics. 

 

LITERATURE SURVEY: 

A traditional method to reduce the aging effects is 

overdesign which includes techniques like guard-banding 

ad gate  oversizing. This  approach can be area and 

power inefficient [8]. To avoid this problem, an NBTI- 

aware technology mapping technique wasproposed in [7] 

which guarantee the performance of the circuit during its 

lifetime. Another technique was an NBTI- aware sleep 

transistor in [3] which improve the lifetime stability of 

the power gated circuits under considerations. A joint 

logic restructuring and pin reordering method in [6] is 

based on detecting functional symmetries and transistor 

stacking effects. This approach is an NBTI optimization 

method that considered path sensitization. Dynamic 

voltage scaling and bogy-biasing techniques 

wereproposed in [4] and [5] to reduce power or extend 
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circuit life. These techniques require circuit modification 

or do not provide optimization of specific circuits.  Every 

gate in any VLSI circuit has its own delay which reduces 

the performance of the chip. Traditional circuits use 

critical pathdelayas the overall circuit clock cycle in order 

to perform correctly. However, in many worst-case 

designs, the probability that the critical pathdelay is 

activated is low. In such cases, the strategy of minimizing 

the worst-case conditions may lead to inefficient designs. 

Fornoncritical path, using the critical path delay as the 

overall cycle period will result in significant timing waste. 

Hence, the variable latencydesign was proposed to 

reduce the timing waste of traditional circuits.  A short 

path activation function algorithm was proposed in [16] 

to improve the accuracy of the hold logic and to 

optimize the performance of the variable-latency circuit. 

An instruction scheduling algorithm was proposed in 

[17] to schedule the operations on nonuniform latency 

functional units and improve the performance of Very 

Long Instruction Word processors. In [18], a variable-

latency pipelined multiplier architecture with a Booth 

algorithm was proposed. In [19], process-variation 

tolerant architecture for arithmetic units was proposed, 

where the effect of process-variation is considered to 

increase the circuit yield. In addition, the critical paths 

are divided into  two shorter paths that could be unequal 

and the clock cycle is set to the delay of the longer one. 

These research designs were able to reduce the timing 

waste of traditional circuits to improve performance, but 

they did not consider the aging effect and could not 

adjust themselves during the runtime. A  variable-latency 

adder design that considers the aging effectwas proposed 

in [20] and [21]. Chen et al (2003) presented low-power 

2's complement multipliers by minimizing the switching 

activities of partial products using the radix-4 Booth 

algorithm. Before computation for two input data, the 

one with a smaller effective dynamic range is processed 

to generate Booth codes, thereby increasing the 

probability that the partial products become zero. By 

employing the dynamic-range determination unit to 

control input data paths, the multiplier with a column-

based adder tree of compressors or counters is designed. 

To further reduce power consumption, the two 

multipliers based on row-based and hybrid-based adder 

trees are realized with operations on effective dynamic 

ranges of input data. 

EXISTING TECHNIQUE:  

 

RADIX-16 BOOTH MULTIPLIER:  describe 

briefly the architecture of the basic radix-16 Booth 

multiplier (see [17] for instance). For sake of 

simplicity, but without loss of generality, we consider 

unsigned operands with n = 64. Let us denote with X 

the multiplicand operand with bit components xi (i = 0 

to n − 1, with the least-significant bit, LSB, at position 

0) and with Y the multiplier operand and bit 

components yi. The first step is the recoding of the 

multiplier operand [8]:  groups of four bits with 

relative values in the set {0, 1, . . . , 14, 15} are recoded 

to digits in the set {−8,−7, . . . , 0, . . . , 7, 8} 

(minimally redundant radix-16 digit set to reduce the 

number of multiples). This recoding is done with the 

help of a transfer digit ti and an interim digit wi [7]. 

The recoded digit zi is the sum of the interim and 

transfer digits zi = wi + ti. When the value of the four 

bits, vi, is less than 8, the transfer digit is zero and the 

interim digit wi = vi. For values of vi greater than or 

equal to 8, vi is transformed into vi = 16 − (16 − vi), so 

that a transfer digit is generated to the next radix-16 

digit position (ti+1) and an interim digit of value wi = 

−(16 − v) is left. That is 0 ≤vi < 8 : ti+1 = 0 wi = vi wi ∈ 

[0, 7] 8 ≤vi ≤ 15 : ti+1 = 1 wi = −(16 − vi) wi ∈ 

[−8,−1]. The transfer digit corresponds to the most-

significant bit (MSB) of the four-bit group, since this 

bit determines if the radix-16 digit is greater than or 

equal to 8. The final logical step is to add the interim 

digits and the transfer digits (0 or 1) from the radix-16 

digit position to the right. Since the transfer digit is 

either 1 or 0, the addition of the interim digit and the 

transfer digit results in a final digit in the set {−8,−7, . . 

. , 0, . . . , 7, 8}. Due to a possible transfer digit from 

the most significant radix-16 digit, the number of 

resultant radix-16 recoded digits is _(n + 1)/4_. 

Therefore, for n = 64 the number of recoded digits 

(and the number of partial products) is 17. Note that 

the most significant digit is 0 or 1 because it is in fact 

just a transfer digit. After recoding, the partial products 

are generated by digit multiplication of the recoded 

digits times the multiplicand X.  

 

  
 

 Fig. 1. Partial product generation. For the set of digits 

{−8,−7, . . . , 0, . . . , 7, 8}, the multiples 1X, 2X, 4X, 
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and 8X are easy to compute, since they are obtained 

by simple logic shifts. The negative versions of these 

multiples are obtained by bit inversion and addition of 

a 1 in the corresponding position in the bit array of the 

partial products. The generation of 3X, 5X, and 7X 

(odd multiples) requires carry-propagate adders (the 

negative versions of these multiples  are obtained as 

before). Finally, 6X is obtained by a simple one bit left 

shift of 3X. Fig. 1 illustrates a possible implementation 

of the partial product generation. Five bits of the 

multiplier Y are used to obtain the recoded digit (four 

bits of one digit and one bit of the previous digit to 

determine the transfer digit to be added). The 

resultant digit is obtained as a one-hot code to directly 

drive a 8 to 1 multiplexer with an implicit zero output 

(output  equal to zero when all the control signals of 

the multiplexer are zero). The recoding requires the 

implementation of simple logic equations that are not 

in the critical path due to the generation in parallel of 

the odd multiples (carry-propagate addition). The 

XOR at the output of the multiplexer is for bit 

complementation (part of the computation of the two’s 

complement when the multiplier digit is negative). Fig. 

2(a) illustrates part of the resultant bit array for n = 64 

after the simplification of the sign extension [7]. In 

general, each partial product has n + 4 bits including 

the sign in two’s complement representation. The 

extra four bits are required to host a digit 

multiplication by up to 8 and a sign bit due to the 

possible multiplication by negative multiplier digits. 

Since the partial products are left-shifted four bit 

positions with respect to each other, a costly sign 

extension would be  necessary. However, the sign 

extension is simplified by concatenation of some bits 

to each partial product (S is the sign bit of the partial 

product and C is S complemented): CSSS for the first 

partial product and 111C for the rest of partial 

products (except the partial product at the bottom that 

is non negative since the corresponding multiplier digit 

is 0 or 1). The bits denoted by b in Fig. 2 corresponds 

to the logic 1 that is added for the two’s complement 

for negative partial products. After the generation of 

the partial product bit array, the reduction 

(multioperand addition) from a maximum height of 17 

(for n = 64) to 2 is performed. The methods for 

multioperand addition are well known, with a 

common solution consisting of using 3 to 2 bit 

reduction with full adders (or 3:2 carry-save adders) or 

4 to 2 bit reduction with 4:2 carry-save adders. The 

delay and design effort of this stage are highly 

dependent on the maximum height of the bit array. It 

is recognized that reduction arrays of 4:2 carry-save 

adders may lead to more regular layouts [16]. For 

instance, with a maximum height of 16, a total of 3 

levels of 4:2 carry-save adders would be necessary. A 

maximum height of 17 leads to different approaches 

that may  increase the delay and/or require to use 

arrays of 3:2 carry-save adders interconnected to 

minimize delay [20]. After the reduction to two 

operands, a carry-propagate addition is performed. 

This addition may take advantage of the specific signal 

arrival times from the partial product reduction step. 

To reduce the maximum height of the partial product 

bit array we perform a short carry-propagate addition 

in parallel to the regular partial product generation. 

This short addition reduces the maximum height by 

one row and it is faster than the regular partial product 

generation. Fig. 2(b) shows the elements of the bit 

array to be added by the short adder. Fig. 2(c) shows 

the resulting partial product bit array after the short 

addition. Comparing both figures, we observe that the 

maximum height is reduced from 17 to 16 for n = 64. 

Fig. 3 shows the specific elements of the bit array 

(boxes) to be added by the short carry-propagate 

addition. In this figure, pi,j corresponds to the bit j of 

partial product i, s0 is the sign bit of partial product 0, 

c0 = NOT(s0), bi is the bit for the two’s complement 

of partial product i, and zi is the ith bit of the result of 

the short addition.  The selection of these specific bits 

to be added is justified by the fact that, in this way, the 

short addition delay is hidden from the critical path 

that corresponds to a regular partial product 

generation (this will be shown in Section IV). We 

perform the computation in two concurrent parts A 

and B as indicated in Fig. 3. The elements of the part 

A are generated faster than the elements of part B. 

Specifically the elements of part A are obtained from: 

• the sign of the first partial product: this is directly 

obtained from bit y3 since there is no transfer digit 

from a previous  radix-16 digit; • bits 3 to 7 of partial 

product 16: the recoded digit for partial product 16 

can only be 0 or 1, since it is just a transfer digit. 

Therefore the bits of this partial product are generated 

by a simple AND operation of the bits of the 

multiplicand X and bit y63 (that generates the transfer 

from the previous digit). Therefore, we decided to 

implement part A as a speculative  addition, by 

computing two results, a result with carry-in = 0 and a 

result with carry-in = 1. This can be computed 

efficiently with a compound adder [7].  

PROPOSED TECHNIQUE: 

DESIGN OF SQUARE ROOT CSLA 

 
Fig: Basic building block of CSLA 
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Block diagram of 16-bit Carry Select adder: 

 
Fig: Existing system (Regular 16-bit Carry select adder) 

  The block diagram of the regular 16-bit 

square root CSLA is shown in the figure 3.2. This 

adder is a variable sized adder. 

  The carryselect adder generally consists of 

two ripple carry adders and a multiplexer. Adding two 

n-bit numbers with a carry-select adder is done with 

two adders (therefore two ripple carry adders) in order 

to perform the calculation twice, one time with the 

assumption of the carry being zero and the other 

assuming one. After the two results are calculated, the 

correct sum, as well as the correct carry, is then 

selected with the multiplexer once the correct carry is 

known. 

 

 
Fig: -bit carry select adder module topology 

  Seeing at the figure, the hardware overhead 

of the carry select adder is restricted to an additional 

carry path and a multiplexer and equals about 80% 

with respect to ripple carry adder. A full carry select 

adder is now constructed by chaining equal number of 

adder stages.  

  The critical path is shaded in gray color. 

From inspection of the circuit, we can derive the first 

order model of the worst case propagation delay of the 

module written as, 

T = tsetup + P × tcarry + (2N)^½ × tmux + tsum 

 
Fig: Delay propagation of 16-bit CSLA 

 The design procedure and the delay 

propagation of the 16-bit square root CSLA can be 

best explained from the figure 3.4. As from the figure, 

it can be seen that the model consists of 5 groups of 

different size. The addition process is carried out by 

considering the carry Cin=0 and Cin=1 and then 

generating the actual sum and carry using the actual 

carry from the previous stage is accomplished. 

Architecture of 16-bit square root CSLA: 
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Fig: Delay and area evaluation of regular SQRT 

CSLA: (a) group2, (b) group3, (c) group4 and (d) 

group5. F is a Full Adder. 

 This 16-bit square root CSLA consists of five 

groups where each group is of variable size. The 16-bit 

value data is divided as 2-bit, 2-bit, 3-bit, 4-bit, 5-bit 

groups. The first group consists of 2-bit ripple carry 

adder. The actual input carry is applied to this adder. 

The ripple carry adder receives the carry and 

performs the 2 2-bit addition (a[1:0], b[1:0]).  

   

Delay and Area Evaluation Methodology of the basic 

adder blocks: 

The AND, OR and Inverter (AOI) 

implementation of an XOR gate is shown in the figure 

3.6. The gates between the dotted lines are performing 

the operations in parallel and the numeric 

representation of each gate indicates the delay 

contributed by that gate.  

 
Fig : Delay and Area evaluation of an XOR gate 

The delay and area evaluation methodology 

considers all gates to be made up of AND, OR and 

Inverter, each having delay equal to 1 unit and area 

equal to 1 unit.  

 

RESULT: 

 
 

CONCLUSION: 

In this paper, a new Radix16 modified booth 

multiplier architecture along with carry select adder is 

presented  to execute the multiplication-accumulation  
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operation, which is the key  operation, for digital signal  

processing and multimedia information processing 

efficiently, was proposed. By removing  the 

independent accumulation process that has the largest 

delay and merging it   to the compression process of 

the partial products, the overall multiplier 

performance has been improved almost twice as much 

as in the previous algorithms. 
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