
Copyright @ 2018 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.02, IssueNo.03, June -2018, Pages: 467-475

EFFICIENT AND ENHANCED LOW DENSE REIABLE

MULTIPLIER DESIGN

1. A.N.LAKSHMI, 2.P.PRASANNA KUMAR

1. PG Student, Dept. of ECE, Kakinada Institute Of Technological Sciences, Ramachandrapuram , A.P

2. Assistant Professor, Dept. of ECE, Kakinada Institute Of Technological Sciences, Ramachandrapuram , A.P

ABSTRACT:

This project presents a design methodology for high-speed Booth encoded parallel multiplier. For partial product

generation, we propose a new modified Booth encoding (MBE) scheme to improve the performance of traditional

MBE schemes. An an optimization for binary radix-16 (modified) Booth recoded multipliers to reduce the maximum

height of the partial product columns to _n/4_ for n = 64-bit unsigned operands is presented in this concept. This is in

contrast to the conventional maximum height of _(n + 1)/4_. Therefore, a reduction of one unit in the maximum height

is achieved. This reduction may add flexibility during the design of the pipelinedmultiplier to meet the design goals, it

may allow further optimizations of the partial product array reduction stage in terms of area/delay/power and/or may

allow additional addends to be included in the partial product array without increasing the delay. Further, this project is

enhanced by using modified square root carry select adder to further reduce timing constraints.

KEYWORDS: Modified Booth Encoding, Radix-16, Pipeline, Multiplier, Enhanced, Carry select adder, Binary Excess

Converter.

INTRODUCTION:

Multipliers play an important role in today’s digital signal

processing and various other applications. With

advances in technology, many researchers have tried and

are trying to design multipliers which offer either of the

following design targets – high speed, low power

consumption, regularity of layout and hence less area or

even combination of them in one multiplier thus making

them suitable for various high speed, low power and

compact VLSI implementation. The common

multiplication method is “add and shift” algorithm. In

parallel multipliers number of partial products to be

added is the main parameter that determines the

performance of the multiplier. To reduce the number of

partial products to be added, Modified Booth algorithm

is one of the most popular algorithms. To achieve speed

improvements Wallace Tree algorithm can be used to

reduce the number of sequential adding stages. Further

by combining both Modified Booth algorithm and

Wallace Tree technique we can see advantage of both

algorithms in one multiplier. However with increasing

parallelism, the amount of shifts between the partial

products and intermediate sums to be added will

increase which may result in reduced speed, increase in

silicon area due to irregularity of structure and also

increased power consumption due to increase in

interconnect resulting from complex routing. On the

other hand “serial-parallel” multipliers compromise

speed to achieve better performance for area and power

consumption. The selection of a parallel or serial

multiplier actually depends on the nature of application.

In this lecture we introduce the multiplication algorithms

and architecture and compare them in terms of speed,

area, power and combination of these metrics.

LITERATURE SURVEY:

A traditional method to reduce the aging effects is

overdesign which includes techniques like guard-banding

ad gate oversizing. This approach can be area and

power inefficient [8]. To avoid this problem, an NBTI-

aware technology mapping technique wasproposed in [7]

which guarantee the performance of the circuit during its

lifetime. Another technique was an NBTI- aware sleep

transistor in [3] which improve the lifetime stability of

the power gated circuits under considerations. A joint

logic restructuring and pin reordering method in [6] is

based on detecting functional symmetries and transistor

stacking effects. This approach is an NBTI optimization

method that considered path sensitization. Dynamic

voltage scaling and bogy-biasing techniques

wereproposed in [4] and [5] to reduce power or extend

Copyright @ 2018 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.02, IssueNo.03, June -2018, Pages: 467-475

circuit life. These techniques require circuit modification

or do not provide optimization of specific circuits. Every

gate in any VLSI circuit has its own delay which reduces

the performance of the chip. Traditional circuits use

critical pathdelayas the overall circuit clock cycle in order

to perform correctly. However, in many worst-case

designs, the probability that the critical pathdelay is

activated is low. In such cases, the strategy of minimizing

the worst-case conditions may lead to inefficient designs.

Fornoncritical path, using the critical path delay as the

overall cycle period will result in significant timing waste.

Hence, the variable latencydesign was proposed to

reduce the timing waste of traditional circuits. A short

path activation function algorithm was proposed in [16]

to improve the accuracy of the hold logic and to

optimize the performance of the variable-latency circuit.

An instruction scheduling algorithm was proposed in

[17] to schedule the operations on nonuniform latency

functional units and improve the performance of Very

Long Instruction Word processors. In [18], a variable-

latency pipelined multiplier architecture with a Booth

algorithm was proposed. In [19], process-variation

tolerant architecture for arithmetic units was proposed,

where the effect of process-variation is considered to

increase the circuit yield. In addition, the critical paths

are divided into two shorter paths that could be unequal

and the clock cycle is set to the delay of the longer one.

These research designs were able to reduce the timing

waste of traditional circuits to improve performance, but

they did not consider the aging effect and could not

adjust themselves during the runtime. A variable-latency

adder design that considers the aging effectwas proposed

in [20] and [21]. Chen et al (2003) presented low-power

2's complement multipliers by minimizing the switching

activities of partial products using the radix-4 Booth

algorithm. Before computation for two input data, the

one with a smaller effective dynamic range is processed

to generate Booth codes, thereby increasing the

probability that the partial products become zero. By

employing the dynamic-range determination unit to

control input data paths, the multiplier with a column-

based adder tree of compressors or counters is designed.

To further reduce power consumption, the two

multipliers based on row-based and hybrid-based adder

trees are realized with operations on effective dynamic

ranges of input data.

EXISTING TECHNIQUE:

RADIX-16 BOOTH MULTIPLIER: describe

briefly the architecture of the basic radix-16 Booth

multiplier (see [17] for instance). For sake of

simplicity, but without loss of generality, we consider

unsigned operands with n = 64. Let us denote with X

the multiplicand operand with bit components xi (i = 0

to n − 1, with the least-significant bit, LSB, at position

0) and with Y the multiplier operand and bit

components yi. The first step is the recoding of the

multiplier operand [8]: groups of four bits with

relative values in the set {0, 1, . . . , 14, 15} are recoded

to digits in the set {−8,−7, . . . , 0, . . . , 7, 8}

(minimally redundant radix-16 digit set to reduce the

number of multiples). This recoding is done with the

help of a transfer digit ti and an interim digit wi [7].

The recoded digit zi is the sum of the interim and

transfer digits zi = wi + ti. When the value of the four

bits, vi, is less than 8, the transfer digit is zero and the

interim digit wi = vi. For values of vi greater than or

equal to 8, vi is transformed into vi = 16 − (16 − vi), so

that a transfer digit is generated to the next radix-16

digit position (ti+1) and an interim digit of value wi =

−(16 − v) is left. That is 0 ≤vi < 8 : ti+1 = 0 wi = vi wi ∈

[0, 7] 8 ≤vi ≤ 15 : ti+1 = 1 wi = −(16 − vi) wi ∈

[−8,−1]. The transfer digit corresponds to the most-

significant bit (MSB) of the four-bit group, since this

bit determines if the radix-16 digit is greater than or

equal to 8. The final logical step is to add the interim

digits and the transfer digits (0 or 1) from the radix-16

digit position to the right. Since the transfer digit is

either 1 or 0, the addition of the interim digit and the

transfer digit results in a final digit in the set {−8,−7, . .

. , 0, . . . , 7, 8}. Due to a possible transfer digit from

the most significant radix-16 digit, the number of

resultant radix-16 recoded digits is _(n + 1)/4_.

Therefore, for n = 64 the number of recoded digits

(and the number of partial products) is 17. Note that

the most significant digit is 0 or 1 because it is in fact

just a transfer digit. After recoding, the partial products

are generated by digit multiplication of the recoded

digits times the multiplicand X.

 Fig. 1. Partial product generation. For the set of digits

{−8,−7, . . . , 0, . . . , 7, 8}, the multiples 1X, 2X, 4X,

Copyright @ 2018 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.02, IssueNo.03, June -2018, Pages: 467-475

and 8X are easy to compute, since they are obtained

by simple logic shifts. The negative versions of these

multiples are obtained by bit inversion and addition of

a 1 in the corresponding position in the bit array of the

partial products. The generation of 3X, 5X, and 7X

(odd multiples) requires carry-propagate adders (the

negative versions of these multiples are obtained as

before). Finally, 6X is obtained by a simple one bit left

shift of 3X. Fig. 1 illustrates a possible implementation

of the partial product generation. Five bits of the

multiplier Y are used to obtain the recoded digit (four

bits of one digit and one bit of the previous digit to

determine the transfer digit to be added). The

resultant digit is obtained as a one-hot code to directly

drive a 8 to 1 multiplexer with an implicit zero output

(output equal to zero when all the control signals of

the multiplexer are zero). The recoding requires the

implementation of simple logic equations that are not

in the critical path due to the generation in parallel of

the odd multiples (carry-propagate addition). The

XOR at the output of the multiplexer is for bit

complementation (part of the computation of the two’s

complement when the multiplier digit is negative). Fig.

2(a) illustrates part of the resultant bit array for n = 64

after the simplification of the sign extension [7]. In

general, each partial product has n + 4 bits including

the sign in two’s complement representation. The

extra four bits are required to host a digit

multiplication by up to 8 and a sign bit due to the

possible multiplication by negative multiplier digits.

Since the partial products are left-shifted four bit

positions with respect to each other, a costly sign

extension would be necessary. However, the sign

extension is simplified by concatenation of some bits

to each partial product (S is the sign bit of the partial

product and C is S complemented): CSSS for the first

partial product and 111C for the rest of partial

products (except the partial product at the bottom that

is non negative since the corresponding multiplier digit

is 0 or 1). The bits denoted by b in Fig. 2 corresponds

to the logic 1 that is added for the two’s complement

for negative partial products. After the generation of

the partial product bit array, the reduction

(multioperand addition) from a maximum height of 17

(for n = 64) to 2 is performed. The methods for

multioperand addition are well known, with a

common solution consisting of using 3 to 2 bit

reduction with full adders (or 3:2 carry-save adders) or

4 to 2 bit reduction with 4:2 carry-save adders. The

delay and design effort of this stage are highly

dependent on the maximum height of the bit array. It

is recognized that reduction arrays of 4:2 carry-save

adders may lead to more regular layouts [16]. For

instance, with a maximum height of 16, a total of 3

levels of 4:2 carry-save adders would be necessary. A

maximum height of 17 leads to different approaches

that may increase the delay and/or require to use

arrays of 3:2 carry-save adders interconnected to

minimize delay [20]. After the reduction to two

operands, a carry-propagate addition is performed.

This addition may take advantage of the specific signal

arrival times from the partial product reduction step.

To reduce the maximum height of the partial product

bit array we perform a short carry-propagate addition

in parallel to the regular partial product generation.

This short addition reduces the maximum height by

one row and it is faster than the regular partial product

generation. Fig. 2(b) shows the elements of the bit

array to be added by the short adder. Fig. 2(c) shows

the resulting partial product bit array after the short

addition. Comparing both figures, we observe that the

maximum height is reduced from 17 to 16 for n = 64.

Fig. 3 shows the specific elements of the bit array

(boxes) to be added by the short carry-propagate

addition. In this figure, pi,j corresponds to the bit j of

partial product i, s0 is the sign bit of partial product 0,

c0 = NOT(s0), bi is the bit for the two’s complement

of partial product i, and zi is the ith bit of the result of

the short addition. The selection of these specific bits

to be added is justified by the fact that, in this way, the

short addition delay is hidden from the critical path

that corresponds to a regular partial product

generation (this will be shown in Section IV). We

perform the computation in two concurrent parts A

and B as indicated in Fig. 3. The elements of the part

A are generated faster than the elements of part B.

Specifically the elements of part A are obtained from:

• the sign of the first partial product: this is directly

obtained from bit y3 since there is no transfer digit

from a previous radix-16 digit; • bits 3 to 7 of partial

product 16: the recoded digit for partial product 16

can only be 0 or 1, since it is just a transfer digit.

Therefore the bits of this partial product are generated

by a simple AND operation of the bits of the

multiplicand X and bit y63 (that generates the transfer

from the previous digit). Therefore, we decided to

implement part A as a speculative addition, by

computing two results, a result with carry-in = 0 and a

result with carry-in = 1. This can be computed

efficiently with a compound adder [7].

PROPOSED TECHNIQUE:

DESIGN OF SQUARE ROOT CSLA

Fig: Basic building block of CSLA

Copyright @ 2018 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.02, IssueNo.03, June -2018, Pages: 467-475

Block diagram of 16-bit Carry Select adder:

Fig: Existing system (Regular 16-bit Carry select adder)

 The block diagram of the regular 16-bit

square root CSLA is shown in the figure 3.2. This

adder is a variable sized adder.

 The carryselect adder generally consists of

two ripple carry adders and a multiplexer. Adding two

n-bit numbers with a carry-select adder is done with

two adders (therefore two ripple carry adders) in order

to perform the calculation twice, one time with the

assumption of the carry being zero and the other

assuming one. After the two results are calculated, the

correct sum, as well as the correct carry, is then

selected with the multiplexer once the correct carry is

known.

Fig: -bit carry select adder module topology

 Seeing at the figure, the hardware overhead

of the carry select adder is restricted to an additional

carry path and a multiplexer and equals about 80%

with respect to ripple carry adder. A full carry select

adder is now constructed by chaining equal number of

adder stages.

 The critical path is shaded in gray color.

From inspection of the circuit, we can derive the first

order model of the worst case propagation delay of the

module written as,

T = tsetup + P × tcarry + (2N)^½ × tmux + tsum

Fig: Delay propagation of 16-bit CSLA

 The design procedure and the delay

propagation of the 16-bit square root CSLA can be

best explained from the figure 3.4. As from the figure,

it can be seen that the model consists of 5 groups of

different size. The addition process is carried out by

considering the carry Cin=0 and Cin=1 and then

generating the actual sum and carry using the actual

carry from the previous stage is accomplished.

Architecture of 16-bit square root CSLA:

Copyright @ 2018 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.02, IssueNo.03, June -2018, Pages: 467-475

Fig: Delay and area evaluation of regular SQRT

CSLA: (a) group2, (b) group3, (c) group4 and (d)

group5. F is a Full Adder.

 This 16-bit square root CSLA consists of five

groups where each group is of variable size. The 16-bit

value data is divided as 2-bit, 2-bit, 3-bit, 4-bit, 5-bit

groups. The first group consists of 2-bit ripple carry

adder. The actual input carry is applied to this adder.

The ripple carry adder receives the carry and

performs the 2 2-bit addition (a[1:0], b[1:0]).

Delay and Area Evaluation Methodology of the basic

adder blocks:

The AND, OR and Inverter (AOI)

implementation of an XOR gate is shown in the figure

3.6. The gates between the dotted lines are performing

the operations in parallel and the numeric

representation of each gate indicates the delay

contributed by that gate.

Fig : Delay and Area evaluation of an XOR gate

The delay and area evaluation methodology

considers all gates to be made up of AND, OR and

Inverter, each having delay equal to 1 unit and area

equal to 1 unit.

RESULT:

CONCLUSION:

In this paper, a new Radix16 modified booth

multiplier architecture along with carry select adder is

presented to execute the multiplication-accumulation

Copyright @ 2018 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.02, IssueNo.03, June -2018, Pages: 467-475

operation, which is the key operation, for digital signal

processing and multimedia information processing

efficiently, was proposed. By removing the

independent accumulation process that has the largest

delay and merging it to the compression process of

the partial products, the overall multiplier

performance has been improved almost twice as much

as in the previous algorithms.

REFERENCE:

[1] Wen-Chang Yeh and Chein-Wei Jen, “High-speed

Booth encoded parallel multiplier design,” IEEE

Trans. on Computers, vol. 49, isseu 7, pp. 692-701,

July 2000.

[2] Jung-Yup Kang and Jean-Luc Gaudiot, “A simple

high-speed multiplier design,” IEEE Trans. on

Computers, vol. 55, issue 10, Oct. pp. 1253-1258,

2006.

[3] Shiann-Rong Kuang, Jiun-Ping Wang and Cang-

Yuan Guo, “Modified Booth multipliers with a regular

partial product array,” IEEE Trans. onCircuit and

Systems, vol.56, Issue 5, pp. 404-408, May 2009.

[4] Li-rong Wang, Shyh-Jye Jou and Chung-Len Lee,

“A well-structured modified Booth multiplier design,”

Proc. of IEEE VLSI-DAT, pp. 85-88, April 2008.

[5] A. A. Khatibzadeh, K. Raahemifar and M.

Ahmadi, “A 1.8V 1.1GHz Novel Digital Multiplier,”

Proc. of IEEE CCECE, pp. 686-689, May 2005.

[6] S. Hus, V. Venkatraman, S. Mathew, H. Kaul, M.

Anders, S. Dighe, W. Burleson and R.

Krishnamurthy, “A 2GHZ 13.6mW 12x9b mutiplier

for energy efficient FFT accelerators,” Proc. of IEEE

ESSCIRC, pp. 199-202, Sept. 2005.

[7] Hwang-Cherng Chow and I-Chyn Wey, “A 3.3V

1GHz high speed pipelined Booth multiplier,” Proc.

of IEEE ISCAS, vol. 1, pp. 457-460, May 2002.

[8] M. Aguirre-Hernandez and M. Linarse-Aranda,

“Energy-efficient high-speed CMOS pipelined

multiplier,” Proc. of IEEE CCE, pp. 460-464, Nov.

2008.

[9] Yung-chin Liang, Ching-ji Huang and Wei-bin

Yang, “A 320-MHz 8bit x 8bit pipelined multiplier in

ultra-low supply voltage,” Proc. of IEEE A-SSCC, pp.

73-76, Nov. 2008.

[10] S. B. Tatapudi and J. G. Delgado-Frias,

“Designing pipelined systems with a clock period

approaching pipeline register delay,” Proc. of IEEE

MWSCAS, vol. 1, pp. 871-874, Aug. 2005.

[11] A. D. Booth, “A signed binary multiplication

technique,” Quarterly J. Mechanical and Applied

Math, vol. 4, pp.236-240, 1951.

[12] M. D. Ercegovac and T. Lang, Digital Arithmetic,

Morgan Kaufmann Publishers, Los Altos, CA 94022,

USA, 2003.

 1

 2

